

TIMING IS AAALLLMMMOOOSSSTTT

EVERYTHING

12 Steps to
Executive

Success
in Software

Management

Roland Racko

ii Timing is Almost Everything

Copyright

Copyright © 2016 by Roland Racko

All rights reserved. No part of this publication may be
reproduced, distributed, or transmitted in any form or by any
means, including photocopying, recording, or other
electronic or mechanical methods, without the prior written
permission of the author, except in the case of brief
quotations embodied in critical reviews and certain other
noncommercial uses permitted by copyright law. For
permission requests, write to the author, at the email address
below.

Roland.Racko@timingisalmosteverything.com

First Edition

Cover design: Roland Racko
 Interior design: Roland Racko

www.timingisalmosteverything.com

http://www.timingisalmosteverything.com/

iii Introduction

Contents

Copyright ii

Acknowledgment iv

Introduction v

PART 1 - THE EXECUTIVE ROLE 14

1 Does the Past Lie to You 15

2 Exercising Your Power With a Velvet Glove 24

3 More Glove Work 38

4 Where Are We Now? 51

PART 2 – MAKING SUCCESS HAPPEN 68

5 Assessing Your Team’s Anarchy 69

6 Dissolving Team Anarchy 79

7 Enhancing Your Power by Exercising It 88

8 Putting It All Together – Tips and Tricks 98

9 Conclusion 108

Appendix 1 Improvisations on the

 10 High Payback Questions 111

Appendix 2 Anarchy Questionnaire 123

Appendix 3 Risks for High Scoring Anarchy Questions 129

Glossary 135

About the Author 145

iv Timing is Almost Everything

Acknowledgment

Special thanks to Ivar Jacobson, the driving force behind
SEMAT Essence. The more casual conversations we've had
over the last two decades inspired the mindset behind this
book. The heated debates we've had have sharpened us both
– who could ask for more than that?

Bushels of props to some people who have unwittingly
contributed to this book by their sterling examples of what it
means to be relentless in the pursuit of software excellence –
Ed Yourdon, Tom DeMarco, Meilir Page-Jones, Tom Plum,
Steve Weiss, P.J. Plauger. That includes an additional special
fist bump to P.J. who counseled, "By the way, try not to write
a book that fills a much-needed vacuum."

A very warm and heartfelt gratitude to hundreds and
hundreds of public seminar students, magazine column
readers, software managers and clients whose frustrations
and laments have taught me more about what works and
what doesn't than any studying I could have done on my
own.

Finally, huge thanks go to Ivy Green whose support made
timely publication of this book possible.

v Introduction

Introduction

ATTENTION: CEOs, start-up entrepreneurs,
executives.

Is it a burning goal of yours to have a successful, world-class,
software project?

Could you also be one of those senior executives who feel that
they report to their computers, rather than their computers
reporting to them?

Or are you relaxed because information technology projects
are running so smoothly that you feel like nobody needs your
guidance anymore? If you are in this relaxed group, then this
book is likely not for you. You can stop reading, put it down,
and gloat about your successes to the person sitting next to
you on the airplane.

Since you are still reading, let’s speculate that you feel a
certain frustration regarding information technology and/or
you are curious to know more. And, let us further speculate,
that you would like to enhance the influence and control you
have over the business value and success of software
construction in your company.

GOAL OF THE BOOK

All the equipment you need to enhance that influence and
control is in this book. There are 12 precise executive steps.
These steps change the timing and influence of your power.
This book includes tips, tricks and tools - some old, some
new, about the "how" to exert that influence. The book
details give you:

 A set of "management-by-query" style of non-geek
questions that you can ask yourself and your software
team. They are queries that will help guide the team to
deliver better business value from your software

vi Timing is Almost Everything

systems – queries which will engage, inspire and
enliven those who report to you

 Critical tactical timing guidance that gives you the
best leverage for communicating, adopting and
transitioning to the ideas behind each management
query

 Jargon-free monitoring tools that deliver precision
feedback about your software system's progress that
you likely have not yet experienced

 An objective way to diagnose trouble areas in your
software development process and ways to improve
performance in those areas

 A framework for understanding what has previously
prevented your influence from producing the
maximum business value from your software systems.

In short, these pages show the non-technical executive
(someone having approval control over software
development) a new way to corral the software development
process in a manner that enhances the business value of the
product and the project.

How?

By building on insights you already possess: life experience.
The insights used here have always been part of your
experience, even though that experience, has been mostly, if
not entirely, non-technical. The book conceptually divides
the assertion of executive influence in 12 steps, each of which
is strategically-timed. Each step draws on those life insights.

You are not simply reading a handbook on how a largely non-
technical executive can successfully manage software teams
using strategic timing, but you are also about to learn how to
repurpose your best personal insights to achieve maximum
business value from your project.

vii Introduction

The guiding pages of this book show how to time the
following software team actions:

 implementing a “software architecture” as a frame-
work and context to discuss proposed solutions,

 establishing "software floor plans" to describe and
critique the software architecture of those proposed
solutions,

 creating common terminology between users, stake-
holders and developers,

 constructing software components in an ordered way
derived from the software floor plans,

 optimizing the context in which to begin the full
funding of the project.

These team actions are designed to bridge and reconcile
disparate definitions of success that can exist between
executive and team. Coalescence of success definitions
enhances delivered business value of the project.

AUDIENCE OF THIS BOOK

The principal audience is senior executives, at any level,
frustrated by company past experiences with software
projects.

Entrepreneurs of start-ups, who suddenly find themselves
unexpectedly pummeled by the need for elaborate software
systems just to start the business, will also find this book
exceptionally valuable. Start-ups often attract passionate, yet
unseasoned software talent. The "old-hat" ideas get
shortchanged in start-ups because the lack of prior real
development experience has not yet solidified the usefulness
of "old-hat" techniques. Reviewing these will avoid some
horrendous start-up goofs that would otherwise delay entry
into the window of opportunity

.

viii Timing is Almost Everything

Is there anybody who should put this book down and leave
themselves out? Yes.

If you are a theoretician, methodologist, agile fanatic or
sensitive to politically incorrect software language, you
should run screaming for the exits and remove the battery
from your laptop or e-reader before it self-destructs.

INFLUENCE: TIMING AND MAGNITUDE

Influence has two components – timing and magnitude, i.e.,
when the influence is delivered, and the strength of that
delivery. A secret of this book’s ideas is to alter the precise
point in time at which the executive exerts influence.

Typically, an executive expresses influence the first moment
that executive presents a software team with a problem to be
solved with software. The influence is initiatory in its timing
and low key in its magnitude. Presuming the software team is
a good one, the team first refines the problem statement and
then precisely defines a set of computer system requirements
which will act as an effective solution for the opportunity.
The executive then exercises a confirmatory influence, saying
yes, (or maybe no) to the proposed system.

Influence is generally not exerted with commanding strength
by the executive until there is a significant problem to be
solved. All too often this takes place after the software team
has exerted tremendous effort to accomplish the goals of the
executive as the software team understands those goals.

As an example, when the system is finally installed, the
executive unleashes great, intense influence to correct an
often fabulously disappointing situation as the executive
discovers the horrendous gaps that exist between what was
desired and what was delivered. Despite the considerable
energy made available at this point in time by the executive,
the system never quite hits the mark, because making major
repairs to a fully constructed system is incredibly expensive
and draining. Also, such repair can be politically arduous
since the budget is typically exhausted.

ix Introduction

In an even more futile waste of energy, the disappointment is
typically followed by the executives trying to exhort
developers to use the latest tools, techniques, research or
methodologies to improve the next software system. Usually,
the new exhortations fall largely on deaf ears.

What prevents those exhortations from being successful?

Often developers become numb. They become numb when
they experienced that the last set of exhortations had
insufficient support follow on from the same management
team that exhorted them.

Hint: exhortation without thoughtful transition planning and
support doesn't work. (We examine ways to correct that
failure in step 12.)

This book re-orders the timing point to unleash strong
executive influence. Further, it strengthens the confirmatory
moment, the early moments of system solution proposal,
rather than strengthening the end of the project, when it is
nearly always futile and frustrating. The assertion of
influence in those initial conversations, using a
“management by query” style, triggers a cascade of dynamic
positive effects.

The first of these effects aligns the meaning of success for
both technical staff and executive. In that initial
conversation, both technical staff and executive perceive and
define the word "success" differently. They may not always
acknowledge that difference. The executive probably thinks
of success as meaning the computer system delivers value to
the business. The technical team, having more direct
experience with the extraordinary complexity inherent in
today's systems, thinks differently. They may often only think
of success in terms of simply getting the computer system to
run at all, by a scheduled delivery date.

To improve the executive's influence over the business value
delivered, and to reduce disappointment in the system, what
is needed in this conversation is something that will allow

x Timing is Almost Everything

both definitions of success to operate and flourish
concurrently. The resulting operative framework then has a

sufficiently common language that is both one of the goals as well

as the byproducts of the ideals to which this book is a simple yet

useful guide.

As an example of the usefulness of a common language and
architecture, consider building a resort home. From the first
day of conception through the completion of the home,
drawings, floor plans and blueprints are used to guide and
coordinate the process. They are a thinking tool, a planning
tool, a specification tool, an assembly tool and a
communication tool. They are an inseparable part of building
a home throughout all phases of construction. In order to
function on such a broad scale, they are drawn according to
conventions, using common verbal terminologies, which are
worldwide construction industry parlance.

Similarly, all manufactured items have drawings for various
stages of product development -- the larger Boeing airplanes
have more than 100 kinds of floor plan-like drawings. The
documents used to describe software have equivalent
industry standards. Using the insights of this book, special
technical training is not necessary for the executive to
evaluate the business value of certain of those software
documents and, if necessary, reshape that value.

For some of you, a few of the techniques mentioned in the
text may appear to be "old hat" because you have heard about
them before. You may be inclined to believe, out of habit,
that either they are being used in your company or they were
historically used but were experienced as ineffective. You
might be tempted to simply dismiss those techniques as "old
wine in new bottles." The difference is that this book
optimizes the "when" of using those techniques. Additionally,
the book shows you how to examine the validity of any
historical belief about their effectiveness.

xi Introduction

HOW THIS BOOK IS ORGANIZED

Part 1: The Executive Role

Chapter 1 explains what makes software intrinsically
difficult. It illustrates that the book’s method of questions,
used in a novel way, at the right time, by the executive can
circumvent those intrinsic difficulties. It shows how the
tactic of using certain questions can also trigger a change in
the software team’s behavior in ways that additionally
address those intrinsic difficulties.

Chapters 2 through 4 detail the “management by query”
questions (and appropriate team answers) used in the
dialogue between the team and the executive. The questions
attack the intrinsic difficulties of software discovered in
Chapter 1 and will frequently reset the courses of action the
software team will take to deliver improved business value.

To provide the executive and team with a consistent
vocabulary during their dialogue, these chapters also
introduce the world of the “Essence” software standard from
the Object Management Group (see http://www.omg.org).
Developed by members from the SEMAT community (see
http://www.semat.org), SEMAT developed the proposal for
Essence and submitted it to OMG. OMG has adopted it and
has declared ownership of it.

Rather than elaborate the full specification of this standard,
this book highlights what is useful for the executive. It will
strictly avoid many theoretical terms of that standard
(undoubtedly evoking howls, boo's and hisses from
theoreticians and purists). It also does not "sell" or
proselytize Essence nor explain all its historical evolution.
The book will, however, show the important way that
executives, users, stakeholders and developers reading this
book can use and benefit from the utility of the jargon-free
aspect of Essence.

http://www.omg.org/
http://www.semat.org/

xii Timing is Almost Everything

Part 2: Making Success Happen

The remainder of the book covers the last of the 12 steps to
success in detail. The sum total ideas of this book may be
radical for some organizations, or at least different, especially
the ideas of Essence or the philosophies behind the
"management-by-query" executive style. Without insertion
and transition guidance, the value of this book can easily get
lost in the chaos that often poses as software project
progress.

These final chapters, therefore, provide a plan for adopting
and inserting the book ideas into a company and making a
smooth transition to them. Some executives, ones who
perceive the utility of the executive and team dialogue
mentioned earlier, will want to make certain that the
dialogue becomes a routine company occurrence. These
chapters enable such an objective, even in a worst case
scenario – an executive in charge of a medium-sized
company which has a software development group described
as being in a high state of "anarchy."

According to the Software Engineering Institute, about 75
percent of all companies fit that description. Stated another
way, 75 percent of all companies are building software with
more effort and frustration than is really required.

Generally, such unfortunate companies have:

 no idea about the precise cost of software bugs or bug
repair,

 no continuous monitoring of software quality,

 no one with specific responsibility to look for ways to
get extended return on investment from original, first-
time system building efforts; and

xiii

 no one responsible for running an explicit,
continuous, formal, scheduled review of the exact
manner by which people build the computer systems.

This book shows ways of measuring your company's anarchy
(see Chapter 5), so you can compare yourself to that scenario
and adjust the transition and insertion process accordingly.

PREREQUISITES FOR THIS BOOK

The book presumes the executive has general management
skills. The language of this book is largely non-technical.
Every attempt has been made to avoid the use of multi-letter
technical acronyms. No particular computer literacy is
presumed, although it is helpful if you have enough
understanding of your information technology department to
be able to write a one-sentence description of each of the
major computer systems in your company.

For those technical terms that are used, there is a Glossary
for reference whenever we have been constrained to
compress a complicated concept into such a one-word
technical term. When you finish the book, it is worth
studying the Glossary in full, as it will help you get your
tongue around a vocabulary that will necessarily become part
of your enhanced influence and power.

And now, let us begin to learn the details of management by
query and the importance of timing.

PART 1 - THE EXECUTIVE ROLE

15 PART 1 - THE EXECUTIVE ROLE

1

Does the Past Lie to You

oes this sound familiar? “…and I have this great plan
from the software team. It will only cost us 50 million
dollars,” says your CIO/CTO. What goes through your

head? “Damn, another 50 million dollars’ worth of grief” or
something like that?

Information technology should be invisible. It should be an
enabling force that allows you to smoothly service existing
business and aggressively absorb new business. You should
be able to sit in the boardroom, say to the board of directors
that you have just hit the “go” button on the project, and then
say to everybody that all of them can sit back and watch the
plan successfully unfold.

The plan the CIO proposes is undoubtedly great. Based on
past company history however, you might feel that
implementation of the plan using computers will likely fall
far short. But history is misleading you. You are experiencing
a symptom of something else going wrong, not the plan.

What is that something?

In this book you are going to learn the reasons things go
wrong. And most importantly, you will learn the 12 steps to
set them right. But before we look at all of that, it's useful to
understand the crucial, top-level differences between
software building and other things about which you are likely
very knowledgeable such as sales, marketing, distribution,

D

16 Timing is Almost Everything

finance, manufacturing. With that understanding, the logic
of the 12 steps will be apparent.

However much like black magic that information technology
might seem to you to be, the basic thing going wrong is that
information technology is, in fact, currently a very crude
technology in most companies. This is true, irrespective of
the genius of modern hardware. It is also possible that the
behavior of your CIO leads you to believe that software is
mysterious rather than crude. Because of that
mysteriousness, you pay the CIO good money and then tend
to let the CIO alone. But what other part of your business do
you let alone? What makes software exempt?

If you can decide to intervene, to raise the level of software
construction to somewhere above crude, then software can
be changed from an overhead filled with unpleasant
surprises to something that is a true enabler of good,
profitable business. In the following chapters, you will learn
how to raise that level.

LEVERAGE FOR SATISFACTION – THE INCEPTION
POWER POINT

Do you have the personal power to raise that level, to stop
software from being a torment?

Absolutely yes.

Your point of power is that actual moment when the 50-
million-dollar proposal is first being made. Let’s call this
conversational moment your “inception power point.” Do
something different in that inception power point and your
world will change.

That something different is not about giving new kinds of
executive orders, rules or exhortations. Currently, in that
moment, you probably ask questions like:

 “What are the features?”

 “When will it be completed?”

17 PART 1 - THE EXECUTIVE ROLE

 “What is the return on investment?”

 “How long until market availability?”

Those are important questions and you can continue to ask
them. However, this book is about getting new results. To
get new results, we ask new questions. To that initial
conversation, we add some new high-payback questions to
that list. The asking of those new questions will send a very
loud, unambiguous message to all the people below you.

How will that happen?

In order to answer the new questions, those people will have
to think differently and alter their behavior from its prior
routine. That behavioral alteration will cause a pervasive,
profound change in the way your software supports your
business.

What are the questions?

Those questions are part of the 12-step process, and it all
begins in Chapter 2. You may be eager to skip ahead to see
what they are. If you are eager, go ahead and skip if you like.
But come back later when you want to understand just
exactly what it is about software that makes it possible for
certain questions to cause such profound change. We’ll start
that understanding by next exploring what makes software
so tricky.

THE DISTINCTION THAT MAKES SOFTWARE
DIFFERENT

The people in your company are made of atoms. The things
they work with day-to-day – smartphones, paper forms,
memos, copier machines and so on – are also made of atoms.
It's atoms working with atoms. In contrast, information
technology is about computer bits, weightless electronic
elements living inside wires, working with other computer
bits.

People - as atoms - have a property that is extraordinarily
different from computer bits. That property is the ability to

18 Timing is Almost Everything

innovate, to handle exceptions to the rule, to ad-lib, to deal
with surprise or emergency, to make up new rules. People do
all of this in a matter-of-fact way all day, and generally do so
with social grace, intelligence and adaptability. People have
the ability to follow business policy and procedure, and yet
make extemporaneous judgment calls about an adjustment
in the moment if need arises. They have the ability to
respond to changes in the weather or marketplace,
temporary shortage of resources, and even “bad hair days.”

Computer bits have no such innovative abilities.

Computer bits are astonishingly dumb. Bits need direction
and counseling. This fundamental difference makes software
intrinsically difficult to get right. That difficulty presents an
enormous unspoken challenge to a software team; it is a
challenge which subverts the team energy in powerful ways
and prevents full realization of some other business goals as
we'll see in the short discussion below.

Slowly, over time, your information technology team
identifies the major replicable and routine portions of the
business procedures to be performed. Then they try to
predict what adaptive behavior might be needed. The team
then expresses all this in terms of bits working with bits.
Software developers translate the business policy and
exception handling skills of people into fixed rules that bits
can do to other bits.

But in a way, it is an oversimplification to call this process a
"translation" since fixed rules are not intrinsically innovative.
The translation process is more like a simulation -- getting
bits to at least partially simulate, at faster speed, what
innovative people atoms would do if they had the appropriate
resources for whatever was the task at hand.

Getting bits to simulate human ad-libbing is fantastically
complicated and difficult. The level of difficulty involved
parallels the difficulty of getting a cricket to perform (or
simulate) singing "Happy Birthday" instead of chirping and
then have the cricket go on to do jazz improvisation on the
theme.

19 PART 1 - THE EXECUTIVE ROLE

Software developers consider themselves wildly successful if
they get bits to perform just the more routine, non-
innovative aspects of what people atoms do without error.
They make guesses about which probable innovative
behaviors will occur often enough to warrant trying to codify
them and putting them in the system. Those guesses are
rarely complete because, by definition, they are about
behavior that is intrinsically innovative and spontaneous and
occurring within an environment which is itself also
changing. In other words, it is often quite enough to just get a
computer system to run at all.

Another characteristic of software that makes it inherently
difficult is the fact that almost every piece of software is a
custom piece of software. The development team is making
something that it has never built before. That means the
team does not have the conscious competence and
experiential nuances that come from having already built the
same thing several times. The team, despite elaborate
preparations, is essentially exploring new territory to a
greater or lesser degree with the inherent inefficiencies of
such an exploration.

Given the above points, developers historically tested
computer systems to the point of that first success, stopped,
cheered wildly and breathed a sigh of relief. Because of the
difficulty of getting bits to simulate the business behavior of
even a single group of people, programmers rarely looked
outside that single group’s targeted programmed computer
system. Computer System A was developed for Group A
without reference to Computer System B being developed
later for Group B. It wasn’t even thinkable that there could be
either routine or adaptive behaviors that were identical
across different groups. There rarely was an attempt in the
first effort to explore if there was any kind of additional
return on the initial translation investment that could be
used in the second effort. Systems were developed in
isolation from one other, with the above limited definition of
success being adequate. This bias is largely still true in
contemporary software teams.

20 Timing is Almost Everything

LOST - SHARED BUSINESS PRACTICES - IF
FOUND, PLEASE RETURN TO OWNER

In simulating the behavior of people atoms into behavior of
computer bits, what tended to get lost were behaviors in
different company groups of people atoms that were identical
across groups. Put another way, because software developers
in the past built computer systems one at a time and looked
at isolated groups of people in business departments one at a
time, there was little attempt to identify business behavior
common to the many different departments, procedures or
groups of people. There was the unspoken presupposition
that every new system was always new territory. The result
was that in every new system with its new group of people,
there was a certain amount of re-translating of what was, in
fact, a similar business behavior. Almost without exception,
it was a new translation that occurred for every new system.
Thus, we see that not only does constructing software take
great effort because it’s simulating innovative behavior, but it
takes even more effort because teams inadvertently redo a lot
of the effort in subsequent projects.

These similar business behaviors, this common life blood,
can be an important corporate asset when a company can
extract it and save its software expression. It is one of the
ways the company can buffer itself from the exuberant
creativity and adaptability of humans – define and isolate
those activities that are the same. There is tremendous
business value there because it represents simulations which
do not have to be reinvented. Training those bits once,
getting them to simulate the behavior correctly, transmitting
that simulation expertise forward to the next team and then
exploiting that expertise in every future system makes
software take less effort in the long run.

In this book, the forward transmission of expertise from an
originating software effort is called “extended return.”
Extended return is additional payback on the original effort.
It shows up as shorter time to market for future systems
which utilize that effort. And it imparts greater reliability in
every future system. Additionally, organizing all new systems

21 PART 1 - THE EXECUTIVE ROLE

around software containing those shared business practices
helps ensure that new systems always deliver at least the
minimum value inherent in those practices. When these
benefits are realized, software moves closer to the role of a
true enabling resource and moves out of the intrusive
position it now occupies.

This common blood, which represents shared business
practices, was rarely assembled in the past. That failure
occurred because it was nobody's explicit job responsibility
to collect, archive, catalog and distribute those computer bits.
Additionally, it was nobody’s job to explicitly design
computer systems so that they had an “architecture,” a
software floor plan which would support both utilization and
preservation of that shared business behavior in software.

ASK NEW QUESTIONS; GET NEW BUSINESS
VALUE

To ameliorate the intrinsic difficulties of constructing
software we have identified, the questions you, as a high-
level executive, need to add at that inception power point, are
simply ones that probe discerningly for the existence of an
architecture and construction process which:

 supports innovation, adaptability and flexibility in
response to user or environmental change both during
project construction and after completion

 preserves and utilizes shared business activities

 accounts for the custom nature of software

You ask questions that demand, as an implicit part of the
answer, that the life blood is present in those systems and
that it is directed toward the other goals you want. You use
questions which probe, in a new way, for high business value,
and payback greater than just the routine user functions
expected by the stakeholders of the software.

Those questions will be new, and possibly even disarming, to
your team the first time they are heard. They are expecting

22 Timing is Almost Everything

you to ask about features, not value. However, repeated
asking of certain kinds of questions about architecture and
value, accompanied by an insistence on lucid answers, will
forever change your company.

In the next three chapters we will look at 11 steps of this 12-
step guide. Each step is a question you ask your team about
the software system’s value. As well, we will highlight what
useful answers sound like.

POINTS TO PONDER

In your company, how much collected shareable software
expertise is transmitted forward from one project to the
next? How much is lost? If you don’t know that, do you know
what stops your company from measuring that?

Are your non-software departments like manufacturing or
sales better at collecting and sharing common business or
technical expertise? If they are, what has stopped the
software groups from following that lead? What keeps the
software groups exempted from behaving like the other
departments?

If there is a forward transmission of shareable expertise in
your software teams, in what presentation form is it
transmitted? By word of mouth? By standardized
documents? By programmers’ or developers’ code? Do you
know if people can easily access and read that presentation?
Does anybody pay attention to that which is transmitted
forward? What is your measurement for that attention?

Do you expect to get extended return on investment from
new business procedures that are created for your current
sales or manufacturing or shipping groups? Do you expect to
be able to redeploy those procedures if you open up a
division in another country? Who is responsible for ensuring

23 PART 1 - THE EXECUTIVE ROLE

that redeployment is possible? What stops your software
group from operating in a like manner?

What does your software team do to make software systems
adaptable to unexpected user behavior, internal company
political change, marketplace change, regulatory change, and
hardware change either during project construction or after
delivery of the finished project?

24 Timing is Almost Everything

2

Exercising Your Power
With a Velvet Glove

n this chapter, we cover the first 8 steps of this 12 step
guide. Each step is a high payback question about value,
which in some way addresses the intrinsic difficulties of

building software we highlighted in Chapter 1. You could be
wondering if you have to take a degree in Computer Science
in order deal with these high payback questions. A college
degree is not required. You already ask similar questions in
other areas of life or business. Now, you’re just going to ask
them to your CIO, CTO or other technical staff. They will be a
kind of velvet glove covering a dominant hand which coaxes
and teases your team into new behavior. First, let's look at an
area where you use similar questions routinely to determine
value about a prospective purchase. Then we'll demystify
software by drawing the parallels to that innate
understanding you already have.

SIMPLE QUESTIONS FOR A FAMILIAR SCENE

Suppose you were in the market for a resort cottage in the
hills near Tuscany. Nothing elaborate, just a simple place
where you can get an occasional but vital recharge. Your
resort agent lists off these features: one bedroom, bath, living
room, two covered porches, kitchen and special 4 burner
stove. Let's say this feature list is acceptable. Then the agent
shows you this diagram.

I

25 PART 1 - THE EXECUTIVE ROLE

Figure 2-1: Floor Plan - Resort Cottage

Like it? The diagram instantly portrays a horrible botch-up
regarding design of the cottage. The features are all there,
just like you wanted, but the value delivered by this cottage is
sharply reduced by the way the features were put together. It
doesn't matter what the cost of the cottage is, or whether it
will be finished on schedule. It doesn't matter how state-of-
the-art the 4 burner stove with grill is. Its location in the
bedroom might be right for a hyper-chef who wakes up in the
middle of the night with ideas, but a bad match for you. It
doesn't matter how glowingly the agent portrays your future
happiness owning this cottage.

Looking at the diagram you can ask these questions: Does the
path between the kitchen work area and stove seem
reasonable? Will food items find their way into difficult-to-
clean spaces? Can you add another bedroom without

26 Timing is Almost Everything

compromising privacy issues regarding the bath? Can you
add anything without mandating another bath as well?

All of this can be seen and inspected because a readable
diagram was available that showed how the features were
assembled. And, if every time the agent shows you some new
cottage, you make similar questions about the floor plan, it
won't take long before the agent learns what you want
besides obvious features. The agent gets subtly, almost
covertly, trained to understand the kind of value you're after.

At the risk of being obvious, there is an important rule of
thumb that can be taken from the resort cottage example
before going on. It is this - a superior way to ensure that
value gets delivered is to focus on the architecture of a
solution, focus on how things work together; focusing
exclusively on features of a solution is the least effective way.

Evaluating a resort cottage requires examining both features
and value returned. In this same common sense way,
examination of features and value drives the kinds of
questions you will ask about a software system.

SIMPLE QUESTIONS FOR THE SOFTWARE SCENE

Suppose that Figure 2.2 below is the diagram of the 50-
million-dollar system your CIO proposed. It is a Human
Resource Policy application designed to allow employees
around the world to query a central site for questions about
vacations, sick leave, overtime and so on. In this diagram, the
bigger square boxes with little square ears are major
components of the Human Resource Policy application. The
small little boxes attached to the upper right corner of the
bigger boxes, the little “ears,” are places where something
like a part number or other identifying data would be placed
if this diagram were produced by your team. (For our
discussion purposes in this chapter, the "ears" are left
empty.)

27 PART 1 - THE EXECUTIVE ROLE

Figure 2-2: Software Floor Plan Diagram - Human Resources
Query System

For the purposes of this illustration, the dotted arrows show
movement of data or communication between components of
the system. For example, the graphics core sends some kind
of data to the Screen Display, perhaps special graphic
symbols (in the form of bits) that the Human Resources
people like. The solid arrows indicate that computing
services (bits doing something to bits) are being made
available for use by the box that touches the arrowhead. For
example, the Screen Display, which constructs the Human
Resource screens for query responses, uses the services of
Microsoft Windows Operating System to do that
construction. The boxes are the core of a component. The
arrows are the communication connections or fittings
(technicians say “interface”) between the components.

That’s the basics of navigating this kind of diagram. Your
team may use some other diagramming scheme, but it will
have similar notions and graphics. They won't call it a “floor

28 Timing is Almost Everything

plan”, since that isn't technical enough for geek-types; they
will have another name. Go with it. Summarizing this
diagram: there are components and the components provide
either services or data to one another. With this insight into
the “furniture” of a Software Floor Plan Diagram, we can do
the next 8 steps, and that is, form the high payback
questions.

QUESTION #1 - What Goes On in Each Box?

The name of each box should give an obvious clue about what
the component does in the context of the solution. Fuzzy
names, like “network stuff” to use an extreme example,
should arouse your suspicion that more homework needs to
be done by the team. At a minimum, your team should be
able to give you a simple one-sentence description that
makes sense to you. Keep asking until you get that sentence.
Also, see the glossary definition for “cohesion”.

The remainder of the questions in this chapter depends on
your having satisfied yourself that you understand the basic
function of each component. It is possible that some small
number components do not have direct business function but
are rather a kind of glue required by the technology at hand
to support business functions. That’s OK, but you should be
clear about which components are of one kind or the other.

Here are some sample answers for question #1:

“The Query Translator converts the user's typed question
into a computer form which can be understood by HR Rules
Base and Graphics Core.”

“The HR Rules Base contains all the human resource policy
rules for the company.”

“The Graphics Core contains graphs, charts, pictures,
company logo, signatures and so on needed for making the
responses visually appealing and presentable.”

29 PART 1 - THE EXECUTIVE ROLE

“The Screen Display makes the pretty pictures on the user’s
desktop computer or web browser.”

“Microsoft Windows is a service provided by Microsoft's
software which helps the Screen Display make the pretty
pictures on a user’s desktop monitor.”

“Motif is a service provided by the UNIX software which
helps the Screen Display make the pretty pictures for those
users connected to UNIX. The system architecture can use
either Motif or Microsoft Windows according to the user’s
input device equipment.

Question #1 is a first probe for good architecture. If simple
sentences cannot convey useful meaning about the
components, the team doesn't have its arms around this
application yet. This question lets the team know that you
want to poke around inside this system, see how it is put
together and that you will not be satisfied with a simple
feature description like “it helps our employees understand
our company benefits.”

One of our clients was so strongly committed to getting clear
responses to this question that he stopped hiring computer
science graduates for programmer and developer positions.
Instead, he hired English majors and philosophers and then
trained them in programming techniques. He did this
because that way, he always got systems whose components’
descriptions were clear to understand. And more
importantly, he got systems that future programmers could
understand when they came back later to add modifications
to the system.

QUESTION #2 - How much dependency do we have
on “X”?

Dependencies on services that are not part of your team's
effort can cause havoc if improperly handled. The dishwasher
in your resort cottage needs electric services. No electricity,
no clean dishes. With this question, you are evaluating the
risk the new system will present to your business due to
dependencies, whether they are internal or external. “X” in

30 Timing is Almost Everything

the question above is anything on the diagram that provides
services or data to another box. So for this diagram, a
question would be “how much dependency do we have on
Microsoft's software?” A variation on this question is “what
are all the dependencies?”

Every system has dependencies. From your perspective, it is
important to evaluate the business risk associated with each
of the system dependencies and any limitations it imposes on
flexibility and adaptability. If your system is highly
dependent on something which is subject to change, frequent
upgrade, or is marginally reliable, or composed of new
untested technology, then the system presents higher
business risk. So this question is an explicit probe about
business risk.

Good answers are something like “we have isolated our
strongest dependency to 3 Microsoft connecting points which
are among the most stable ones in Microsoft's marketing
history.” The answer shows that the team has been giving
thought to minimizing dependency as opposed to wantonly
using every possible connection, bell and whistle that might
be alluring or glitzy. A primary art of system architecture
design is minimizing dependencies.

Dependencies aren’t just about services or data provided by
components. Quality of service, often called the “service level
agreement”, is also a kind of dependency. For example, many
systems that include a network will have a concern about
“bandwidth,” the number of bits that can be carried on the
wires or fiber optics of the networks. Your questions about
dependencies should probe for quality of service levels and
fallback plans when service levels are thrown awry because of
a wobbling satellite or severed fiber optic cable. In the
Human Resources example, any arrow might potentially be
implemented as part of a network. There are no universal
answers here, except the one that, historically, it seems a
company can never have too much bandwidth or too much
network fallback.

31 PART 1 - THE EXECUTIVE ROLE

QUESTION #3 - Which dependencies have we
chosen to insulate the system from, what factors led
to those choices instead of others and how have we
done that?

In the resort cottage, an architect can choose to build the
cottage for summer use only or for both winter and summer
use. One of the obvious ways to build for both seasons is to
make the outside walls thick enough, so that a barrier
material can be placed inside the wall to protect against
winter cold. The architect could also protect against loss of
electric power by including a portable power generator in the
cottage appliance wiring circuit, especially if the architect has
trumpeted that this cottage is an “all-electric” design. Each
choice has an additional cost, but reduces certain kinds of
risk or dependency.

Designers of computer systems have the option to insulate
the system components shown in the Software Floor Plan
Diagram in similar ways. If you don't ask them about such
insulation, their habitual choice will probably be to provide
minimal insulation in order to keep overall operating and
system construction costs down. The company culture may
also subtly encourage developers to never try to insulate,
since it takes extra development time to evaluate the trade-
offs. They will be most tempted to follow the “never-try”
habit if the perceived unspoken management priorities have
historically seemed to favor meeting the delivery schedule
above all goals. So this question gives your team permission
to undertake a thoughtful evaluation of ways to minimize the
impact of change that could occur in critical dependencies.
We will discuss a formal document, the VoxDoc, which your
team can build to capture change impact for one and all to
see in Chapter 8.

A sample thoughtful answer to this question is something
like “we know that the HR Rules Base is in great flux. Policy
is revised sometimes as much as twice a year to keep up with
competitive employment offerings and our own desire to
offer maximum value to our employees. So we have built a
little stabilizing filter that sits between the query translator

32 Timing is Almost Everything

and the rules base. It presents an unchanging face to the
query translator and messages rules so that they always look
the same to the translator even if the rules are changing
underfoot. We chose to insulate only the dependency with
the greatest amount of historical change history and are
crossing our fingers that the rate of change of everything else
stays as small as it has been historically. The stabilizing filter
should handle even changes to federally mandated medical
policy.”

QUESTION #4 - What is the performance cost of the
insulation?

Insulation in computer systems has at least two kinds of cost.
There is a design and build cost that is a one-time affair
which occurs during system construction. The second kind of
cost is the effect on system performance (usually speed) that
the insulation exacts as the system runs in operation. The
insulation will require some computer resources to do its
insulating, thus degrading to some degree, overall system
responsiveness. This question probes that impact.

Here is the structure of a satisfactory answer for the earlier
stabilizing filter: “There is about a 2 percent performance
penalty for that stabilizing filter for query loads as high as
1000 queries per minute. It translates into an additional .5
second delay in web browser response.” There are no magic
numbers for performance degradation values here, but it
should be rationally related to the underlying main business
requirements and user experience expectations. Often, that
means a smallish performance penalty is tolerable. If it is not
relatively small compared to resources needed by other
components, then there is risk that the system will collapse
under unexpected heavy loads. A special performance
engineering group may be required, if you do not already
have one, to optimally balance insulation resources
requirements against other business requirements.

33 PART 1 - THE EXECUTIVE ROLE

QUESTION #5 - Where do we insulate against
changes in government regulations, competitive
trends, marketplace trends etc.?

The architect who designed your resort cottage took into
account local, regional, and possibly national building
regulations and codes. If he was any good at all, the architect
figured into his thinking, trends that he saw happening in
those regulations or zoning practice trends which might
affect the future serviceability of the cottage.

In a similar way, this question probes for dependencies or
assumptions which could be conceivably permeating all
components, dependencies which are not related to the
arrows in the Software Floor Plan Diagram. To prepare for
this question, you, the non-technical executive, should
speculate on all the things in the business context you are
aware of that might give your business a rough ride over the
next several years. It is generally not cost effective to design
computer systems which are insulated against every
conceivable business contingency that could happen. But the
team will take their design priorities from those areas which
you scrutinize.

Satisfactory answers would point to specific components on
the Software Floor Plan Diagram that performed the
insulation against the external business risk trends that are
important to you. There may be system speed degradation
for that insulation as was mentioned in question #4. Such
degradation potential is also worth examining and is another
thing called out in the VoxDoc alluded to earlier.

QUESTION #6 - What happens if we change hard-
ware or network components?

Systems can be built in one of two ways: either critically
dependent on one-of-a-kind hardware features or,
alternatively, built with standardized fittings into which
arbitrary hardware can be plugged. “Fitting” here, means the
mechanical plugs and electrical signal specifications which
need to be common between two components in order for
them to work well together. Although there is a spectrum of

34 Timing is Almost Everything

choices between these two poles, the speed of technological
development and the voraciousness of computer user
appetites argue heavily towards emphasizing standardized
fittings for hardware.

Left to their own priorities, teams frequently choose making
systems tightly dependent on proprietary hardware features,
using unique fittings rather than standardized ones, in order
to wring out maximum performance from the hardware. That
behavior is an easy first choice if the special hardware
appears to have lower capital costs.

This first easy choice is a kind of specialization of the system
which adapts it to the specific hardware in ways that are
typically difficult to reverse. When new demands require a
later version or faster hardware, that reversal has to be done
after all. The undoing of the specialization is costly and time-
consuming above the cost of the later version hardware. To
outside stakeholders, this effort is frustrating because it
apparently adds no new functional value. A key shorthand
word which technicians have when discussing this issue is
“portability” - high portability means easy adaptability to
new hardware, operating systems, browsers, smartphone
devices and so on. So another way to ask the question is
something like “how portable is the system software?”

Your team should be able to point to those components, if
any, which have been specialized or adapted to particular
hardware, devices, network electronics and so on. They
should have a well-developed rationale for making those
choices rather than more portable choices. And they should
also have developed costs associated with being more
independent of those specializations so a rational discussion
of the near-term versus long-term risks can be evaluated.

A thoughtful answer to question #6 is - “the components
feeding the Screen Display, Motif and Microsoft Windows,
are the only hardware dependent components. Because we
have already organized the Screen Display to accept either of

35 PART 1 - THE EXECUTIVE ROLE

those two, we are in fact, ready for even a third or any
possibility. Geez, Boss, we could connect to a pop-up toaster
if we had to.”

QUESTION #7 - What happens if we add a new line
of business such as Y?

Your team should be able to point to components on the
diagram which might be affected by adding a new business
line. In all fairness, if the new line of business, “Y”, is not
something of which the team might have been previously
aware, they may need some time to answer this question. In
any event, beware of system architectures where the majority
of components are affected by such a change. The likelihood
is high that such architecture has not yet been refined to the
point where the real core of your company’s life blood has
been found. For the HR Policy System, a good answer would
be - “we only need to add some new rules to the H R Rules
Base component.”

All the previous questions probed to determine if the features
of the system would continue to deliver value in spite of
perturbations in the environment. They probed how the
system was put together in an effort to see if rework of the
system, for whatever reason during development or after,
was as easy as possible.

QUESTION #8 - What happens if we want to share
this system with another division (or company)?

This question probes for extended return on investment. It
asks the team to identify components that can be shared by
non-local systems. This question probes for company life
blood, the bits that have utility across company boundaries,
bits representing accumulated expertise transmissible to the
next generation of system developers.

If you feel in a particularly puckish and provocative mood,
point to the Software Floor Plan Diagram and phrase the
question this way, “which of those components can we put in
software inventory?” No CEO, no high-level executive has
ever put this question this way before. Your team will look at

36 Timing is Almost Everything

you dazed, perhaps as if you had spoken Sanskrit or twelfth
century Gaelic. Just continue, “after all, John Deere Tractor
Company has tractor seats in inventory, what stops us from
having software components in inventory?”

Here is an exemplary answer to the question - “We've
identified that there are patterns in the way different
company divisions use graphic symbols. There are four
different patterns. By plugging the appropriate pattern into
the Graphics Core component, we can get extended return
from at least five future systems that are planned in the other
divisions. That makes the Graphics Core component an
inventory item.”

Of course, it is possible that the answer you get is a response
to the “what stops us” part of your question. In other words,
your people actually delineate the present roadblocks to
getting extended return on software. We will talk more about
getting extended return in later parts of this book.

The questions of this chapter can provoke answers like “we
can’t do that” or “it can’t be done.” While that may be true
sometimes in the course of a company’s software process, it
rarely is as definitive a statement as the strength of the voice
tone of the answerer might imply. Architects and team
leaders generally are very high integrity people and take
great pride in their art, but can be conservative because of
past projects that went bad. So they are reluctant to go out on
a limb and support an idea which they feel will have chancy
success. Often, an architect will say it can’t be done when
what he really means is that he personally has not done it
himself three times before. Or he may say that it’s impossible
because he feels the cost will be alarming.

Don’t stop probing when you hear the phrase “it can’t be
done.” But never ask “why” it can’t be done. Using that word
“why” will typically get you rationalization, feelings, opinions
or justification which then leads to debate rather than
progress. Instead, like the software inventory question above,
your most useful response is “well, what stops us from doing
it?” or “what stops it from being possible?” or even “when did

37 PART 1 - THE EXECUTIVE ROLE

you know it can’t be done?” These alternatives to “why” will
often open the way to a more objective discussion which will
enable the impossibility to be resolved in a surprisingly
delightful manner. (We rarely use “why” in that way in this
book.)

In the next chapter we will look at guidance steps 9 and 10.
They will tell you the way in which the activities of building
the system are adding to or reducing the risk of increased
software development costs and effort. In particular, we will
look at whether it is useful for your team to think heroically.

POINTS TO PONDER

Has your team ever produced a drawing that was supposed to
depict architecture? What purpose did they intend the
drawing to be used for? Did its purpose include evaluating
dependencies? If so, were the dependencies obvious in the
diagram, or were only the features obvious?

How much of the computer system development cost has to
be expended now before you know what the dependencies
are? (Chapter 4 will discuss this question.) As a percentage of
total development cost, does that cost parallel the percentage
that needs to be spent in other company divisions to identify
critical dependencies, divisions such as manufacturing, sales,
engineering, or finance?

Do you have in place an inventory system for developer
software components that is as sophisticated, clean and as
well-financed as the inventory control procedures in other
parts of your company? If not, what would stop you from
appointing someone with sufficient authority and budget to
make that happen?

For additional Appendix resources of the book, please visit:
http://www.timingisalmosteverything.com

=========== END OF BOOK SAMPLE ============

http://www.timingisalmosteverything.com/

